FORMATION OF $\underline{\text{N}}\text{-}\text{ALKOXYURETHANES}$ IN THE REACTION OF ETHOXYCARBONYL-NITRENE WITH ETHERS

Tadao SHINGAKI, Masao INAGAKI, Noboru TORIMOTO; and Matsuji TAKEBAYASHI**

College of General Education, Osaka University, Toyonaka, Osaka

**Science Education Institute of Osaka Prefecture, Sumiyoshi-ku, Osaka

**Department of Chemistry, Faculty of Science and Technology,

Kinki University, Higashi-osaka, Osaka

The photolysis of ethyl azidoformate in ethers gave N-alkoxy-urethanes accompanied by ethoxycarbonylaminoethers, insertion products of ethoxycarbonylnitrene into the C-H bonds of ethers. The formation of N-alkoxyurethanes gives a support to a mechanism in which an O-N ylide is included as an intermediate of α -C-H insertion reaction.

In a previous communication, 1) we reported that the α -C-H and α -methyl C-H bonds of cyclic ethers showed unusually large reactivities compared with those of the corresponding C-H bonds of hydrocarbons in the insertion of ethoxycarbonyl-nitrene. On the anomalous reactivities, a mechanism has been advanced in which an O-N ylide is included as an intermediate of the insertion reaction. In this paper, we wish to report on the formation of N-alkoxyurethanes, which seems to give a support to the O-N ylide mechanism.

The photolysis of ethyl azidoformate (I, 0.025 mole) in ethers (II, 0.5 mole) gave \underline{N} -alkoxyurethanes (III) in addition to ethoxycarbonylaminoethers (IV), insertion products of ethoxycarbonylnitrene into the C-H bonds of ethers, and urethane (V). The yields of products are summarized in Table 1. The products (III) were identified by comparison with the \underline{N} -alkoxyurethanes obtained by the insertion of ethoxycarbonylnitrene into the O-H bonds of the corresponding alcohols²) (Table 2).

R-O-R	Product (%)*						
(II) R	RONHCOOEt (III)		IV	H ₂ NCOOEt			
Ethyl	(a)	3.9	CH ₃ -CH-OC ₂ H ₅ 31 NHCOOEt	17			
n-Propyl	(b)		$ \begin{cases} CH_3CH_2-CH-OC_3H_7 \\ NHCOOEt \end{cases} $ 32	20			
		5.6	CH ₃ -CH-CH ₂ OC ₃ H ₇ 3.1 NHCOOEt	20			
			CH ₃ CH ₂ CH ₂ -CH-OC ₄ H ₉ 25 NHCOOEt				
n-Butyl	(c)	4.1	CH ₃ CH ₂ -CH-CH ₂ OC ₄ H ₉ 3.8 NHCOOEt	17			
			CH ₃ -CH-CH ₂ CH ₂ OC ₄ H ₉ 3.9 NHCOOEt				
iso-Amyl	(d) 2.4	0 "	(CH ₃) ₂ CHCH ₂ -CH-OC ₅ H ₁₁ 17 NHCOOEt	3.5			
		(CH ₃) ₂ C-CH ₂ CH ₂ OC ₅ H ₁₁ 5.7 NHCOOEt	15				

Table 1. Photolysis of Ethyl Azidoformate in Ethers

The relative reactivities of various types of C-H bonds of ethers per C-H bond of cyclohexane were estimated based on the yields of insertion products of ethoxycarbonylnitrene into C-H bonds in the photolysis of I (0.025 mole) in an equimolar mixture of an ether (0.25 mole) and cyclohexane (0.25 mole). The estimated values are listed in Table 3, and those of primary (1°), secondary (2°), and tertiary (3°) C-H bonds in 2-methylbutane are also shown for the sake of comparison. As is shown in Table 3, the values of ethereal 2° (β -C-H) and 3° (γ -C-H) bonds are almost the same to those of the corresponding C-H bonds of 2-methylbutane, respectively, while the values of 2°(α -C-H) bonds of ethers are 5.5 times as large as those of 2° C-H bond of 2-methylbutane.

^{*} Yields based on the azide used.

Table 2. NMR and IR Data of N-Alkoxyurethanes (III)

Ш	NMR ($ au$) in CCl $_{\mu}$	IR (cm ^{-l}) in CCl ₄			
	Will (b) III 0014	NH	C=0	C-O	
(a)	CH3-CH2-ONH-COO-CH2-CH3	3300	1720	1240	
	8.70 6.14 1.97 5.85 8.73			1105	
	(t) (q) (bs) (q) (t)				
(b)	CH ₃ -CH ₂ -CH ₂ -ONH-COO-CH ₂ -CH ₃	3280	1720	1255	
	9.03 8.37 6.25 2.00 5.86 8.71			1125	
	(t) (six) (t) (bs) (q) (t)				
(c)	СН ₃ —СН ₂ —СН ₂ —СН ₂ —ОNН—СОО—СН ₂ —СН ₃	3280	1725	1260	
	9.05 8.2~8.9 6.22 1.97 5.86 8.71			1125	
	(t) (m) (t) (bs) (q) (t)				
(d)	CH ₃ CH — CH ₂ —CH ₂ — ONH — COO — CH ₂ — CH ₃ 8.1~8.6 6.18 2.08 5.85 8.71 9.06	3320	1730	1260	
	8.1~8.6 6.18 2.08 5.85 8.71 9.06			1120	
	(m) (t) (bs) (q) (t) (d)				

Table 3. Relative Reactivities per C-H Bond of Cyclohexane

Run	Ether			Cyclohexane	2-M	2-Methylbutane		
	2°(α-C-H)	2°(β-C-H)	3°(γ-C-H)	2°	ı°	2°	3°	
A	4.5	0.7		1				
В	4.4		2.9	1				
C				1	0.09	0.8	3.0	

- A) Reaction in a mixture of n-butylether and cyclohexane.
- B) Reaction in a mixture of iso-amylether and cyclohexane.
- C) Reaction in a mixture of 2-methylbutane and cyclohexane.

The mechanism of the formation of N-alkoxyurethanes (III) and α -C-H insertion products of ethoxycarbonylnitrene may reasonably be explained by assuming a common O-N ylide intermediate (VI) as follows.

When the nitrogen atom of VI migrates to α -carbon atom taking with α -hydrogen abstraction, α -C-H insertion products may be given (path a). If the nitrogen atom abstracts β -hydrogen followed by O-C bond cleavage, N-alkoxyurethanes may be produced (path b). The formation of III seems to give a support to the O-N ylide mechanism of α -C-H insertion reaction. In the reaction of ethoxycarbonylcarbene with n-butyl ether, the formation of ethyl n-butoxyacetate and l-butene has been observed 3). The O-C bond cleavage of ether by the carbene also is explained in terms of an analogous ylide mechanism 4).

REFERENCES

- 1) T. Shingaki, M. Inagaki, N. Torimoto, and M. Takebayashi, Chemistry Letters, 1972, 297.
- 2) T. Shingaki, M. Inagaki, N. Torimoto, and M. Takebayashi, Symposium of Organic Free Radical Reactions, Nagoya, October, 1971.
- 3) G.B.R. de Graaff, J.H. van Dijck-Rothuis, and G. van de Kolk, Rec. trav. chim., 74, 143 (1955).
- 4) W. Kirmse, "Carbene Chemistry", Academic Press, New York, (1964), p. 107.

(Received July 19, 1972)